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The ostap tutorials 
ostap is a set of extensions/decorators and utilities over the basic  PyROOT  functionality (python wrapper for  ROOT  framework). These
utilities greatly simplify the interactive manipulations with  ROOT  classes through python. The main ingredients of  Ostap  are

preconfigured ipython script  ostap , that can be invoked from the command line.
decoration of the basic  ROOT  objects, like histograms, trees, frames, graphs etc.

operations and operators
iteration, element access, etc
extended functionality

decoration of many basic  RooFit  objects
set of new useful fit models, components and operations
other useful analysis utilities

https://travis-ci.org/OstapHEP/ostap-tutorials


Getting started
The main ingredients of  Ostap  are

preconfigured ipython script  ostap , that can be invoked from the command line.

ostap

Invoke the script with  -h  option to get the whole list of all command line options and keys

Optionally one can specify the list of python files to be executed before appearance of the interactive command prompt:

ostap a.py b.py c.py d.py

The list of optional arguments can include also root-files, in this case the files will be opened and their handlers will be available via
local list  root_files 

ostap a.py b.py c.py d.py file1.root file2.root e.py file3.root

Also  ROOT  macros can be specified on the command line

ostap a.py b.py c.py d.py file1.root q1.C file2.root q2.C e.py file3.root q4.C

The script automatically opens  TCanvas  window (unless  --no-canvas  option is specified) with (a little bit modified) LHCb style. It also
loads necessary decorators for  ROOT  classes. At last it executes the python scripts and opens root-files, specified as command line
arguments.

Challenge



Values with uncertanties:  ValueWithError 
One of the central object in  ostap  is  C++  class  Ostap::Math::ValutWithError , accessible in python via shortcut  VE . This class stands
fot r a combination of the value with uncertainties:

from ostap.math.ve import VE

a = VE( 10 , 10 ) ## the value & squared uncertainty - 'variance' 

b = VE( 20 , 20 ) ## the value & squared uncertainty - 'variance' 

print "a=%s" % a 

print "b=%s" % b 

print 'Value    of a is %s'  % a.value() 

print 'Effor    of b is %s'  % b.error() 

print 'Variance of b is %s'  % b.cov2 ()

A lot of math operations are predefined for  VE -objects.

Make a try with all binary operations ( +,-,*,/,** ) for the pair of  VE  objects and combinations of  VE -objects with numbers,
e.g.

a + b 

a + 1 

1 - b

2 ** a 

a +=1   

b += a  

Compare the difference for following expresssions:

a/a      ## <--- HERE 

a/VE(a)  ## <--- HERE

a-a      ## <--- HERE 

a-VE(a)  ## <--- HERE

Note that for trivial cases the correlations are propertly taken into account

Additionally many math-functions are provided, carefully takes care on uncertainties

from ostap.math.math_ve import * 

sin(a)+cos(b)/tanh(b) 

atan2(a,b)/log(a)

Challenge



Simple operations with histograms

Historgam content
 ostap.histos.histos  module provides two ways to access the histogram content

by bin index, using operator  [] : for 1D historgam index is a simple integer number, for 2D and 3D-histograms the bin index is a 2
or 3-element tuple
using functional interface with operator () .

histo = ...

print histo[2]    ## print the value/error associated with the 2nd bin 

print histo(2.21) ## print the value/error at x=2.21

Note that the result in both cases is of type  VE , value+/-uncertainty, and the interpolation is involved in the second case. The
interpolation can be controlled using  interpolation  argument

print histo ( 2.1 , interpolation = 0 ) ## no interpolation 

print histo ( 2.1 , interpolation = 1 ) ## linear interpolation 

print histo ( 2.1 , interpolation = 2 ) ## parabolic interpolation 

print histo ( 2.1 , interpolation = 3 ) ## cubic interpolation

Similarly for 2D and 3D cases,  interpolation  parameter is 2 or 3-element tuple, e.g.  (2,2)   (3,2,2)  ,  (3,0,0) , ...

Set bin content

histo[1] = VE(10,10)

histo[2] = VE(20,20)

Loops over the histogram content:

for i in histo : 

    print 'Bin# %s, the content%s' % ( i, histo[i] ) 

for entry in histo.iteritems() : 

    print 'item  ', entry

The reversed iterations are also supported

for i in reversed(histo) : 

    print 'Bin# %s, the content%s' % ( i, histo[i] )

Histogram slicing
The slicing of 1D-historgam can be done easily using native  slice  in python

h1 = h[3:8]

For 2D and 3D-casss the slicing is less trivial, but still simple

histo2D = ...

h1 = histo2D.sliceX ( 1 ) 

h2 = histo2D.sliceY ( [1,3,5] ) 

h3 = histo2D.sliceY ( 3 ) 

h4 = histo2D.sliceY ( [3,4,5] )



Operators and operations

A lot of operators and operations are defined for histograms.

histo += 1 

histo /= 10 

histo  = 1     + histo      ## operations with constants    

histo  = histo + math.cos   ## operations with functions 

histo /= lambda x : 1 + x   ## lambdas are also functions

Also binary operations are defined

h1 = ...

h2 = ...

h3 = h1 + h2 

h4 = h1 / h2 

h5 = h1 * h2 

h6 = h1 - h2

For the binary operations the action is defiened accordinh to the rule

the type of the result is defined by the first operand (type, and binning)
for each bin  i  the result is estimated as  a oper b , where:

 oper  stands for corresponding operator ( +,-,*,/,**) 
 a = h1[i]  is a value of the first operand at bin  i 
 b = h2(x) , where  x  is a bin-center of bin i 

More operations

There are many other useful opetations:

 abs  : apply  abs  function bin-by-bin
 asym  : equivalent to  (h1-h2)/(h1+h2)  with correct treatment of correlated uncertainties
 frac  : equivalent to  (h1)/(h1+h2)  with correct treatment of correlated uncertainties
 average  : make an average of two historgam
 chi2  : bin-by-bin chi2-tension between two historgams
... and many more

Transformations

h1 = histo.transform ( lambda x,y : y    ) ## identical transformation (copy) 

h2 = histo.transform ( lambda x,y : y**3 ) ## get the third power of the histogram content 

h3 = histo.transform ( lambda x,y : y/x  ) ## less trivial functional transformation

Math functions

The standard math-functions can be applied to the histoigram (bin-by-bin):

from ostap.math.math_ve import *

h1 = sin ( histo ) 

h2 = exp ( histo ) 

h3 = exp ( abs ( histo ) ) 

...

Sampling

There is an easy way to sample the histograms according to their content, e.g. for toy-experiments:



h1 = histo.sample() ## make a random histogram with content sampled according to bin+-error in original histo

h2 = histo.sample( accept = lambda s : s > 0 ) ##sample but require that sampled values are positive

Smearing/convolution with gaussian

It is very easy to smear 1D histogram according to gaussian resolution

h1 = histo.smear ( 0.015 ) ## apply "smearing" with sigma = 0.015 

h2 = histo.smear ( sigma = lambda x :  0.1*x ) ## smear using 'running' sigma of 10% resolution

Rebin

original = ... ## the original historgam to be rebinned 

template = ... ## historgams that deifned new binning  scheme  

rebin1   = original.rebinNumbers  ( template ) ## compare it!  

rebin2   = original.rebinFunction ( template ) ## compare it!

`

Note that there are two methods for rebin  rebinNumbers  and  rebinFunction  - they depends on the treatment of the histogram.

Choose some initial histogram with non-uniform biuning, choose template historam with non-uniform binning and compare two
methods:  rebinNumbers  and  rebinFunction .

Integrals

There are severalintegral-like methods for (1D)histograms

 accumulate  : useful for numbers-like histograms, only bin-content inn used for summation (unless the bin is effectively split in case
of low/high summation edge does not coinside with bin edges)

s = histo.accumulate ()

s = histo.accumulate ( cut = lambda s :  0.4<=s[1].value()<0.5 ) 

s = histo.accumulate ( low  = 1    , high = 14 ) ## accumulate over    1<= ibin <14

s = histo.accumulate ( xmin = 0.14 , xmax = 14 ) ## accumulate over xmin<= x    <xmax

 integrate  : useful for function-like histograms, perform integration taking into account bin-width.

s = histo.integrate ()

s = histo.integrate ( cut  = lambda s :  0.4<=s[1].value()<0.5 ) 

s = histo.integrate ( lowx = 1    , highx = 14   ) ## integrate over    1<= xbin <14

s = histo.integrate ( xmin = 0.14 , xmax  = 21.1 ) ## integrate over xmin<= x    <xmax

 integral  it transform the histogram into  ROOT.TF1  object and invokes  ROOT.TF1.Integral 

Running sums

and the efficiencies of cuts_

h1 = histo.sumv ()        ## increasing order: sum(first,x) 

h2 = histo.sumv ( False ) ## decreasing order: sum(x,last )

Challenge



Efficiency of the cut

Such functionality immediately allows to calculate efficiency historgrams using  effic  method:

h1 = histo.effic ()        ## efficiency of var<x cut 

h2 = histo.effic ( False ) ## efficiency of var>x cut

Conversion to  ROOT.TF(1,2,3) 

Scaling

In additon to trivial scaling operations  h *= 3  and  h /= 10  there are seevral dedicated methdo for scaling

 scale  it scales the historgam content to a given sum of in-range bins

print histo.accumulate()

histo.scale(10)

print histo.accumulate()

 rescale_bins  : it allows the treatment of non-uniform histograms as density distributions. Essentially each bin  i  is rescaled
according to the rule  h[i] *= a / S  , where  a  is specified factor and  S  is bin-area. such type of rescaling is important for
historgams with non-uniform binning

Density

There is method  density  that converts the histgram into density histogram. The density histogram (being interpreted as function) has unit
integral. It is different from the simple rescaling for historgams with non-uniform bins.

d = histo.density()

Statistics

There are many statistic functions

 mean 

 rms 

 kurtosis 

 skewness 

 moment 

 centralMoment 

 nEff  : number of equivalent entries
 stat  : statistical information about bin-to-bin content: mean, rms, minmax, ... in form of  Ostap::StatEntity  class

Figure-of-Merit evaluation and cut optimisation

If figure-of-merit is natural and equals to sigma(S)/S (note that it is equal to sqrt(S+B)/S):

signal = ...  ## distribition for signal

fom1   = signal.FoM2 () ## FoM for var<x cut 

fom2   = signal.FoM2 ( False ) ## FoM for var>x cut

Note that no explicit knowledge of background is needed here - it enters indireclty via the uncertainties in signal determination.

If figure-of-merit is defined as S/sqrt(S+alpha*B)



signal = ... 

background = ... 

alpha = ... 

fom1  = signal.FoM1 ( background , alpha ) ## FoM for var<x cut 

fom2  = signal.FoM1  ( background , alpha , False ) ## FoM for var>x cut

Solve equations

One can also solve equations  h(x) = v 

value = 3 

solutions = histo.solve ( value )

for x in solutions : print x

Conversion to `ROOT.TF(1,2,3)

The conversion of histogram to  ROOT.TF1  objects is straighforward

f = histo.tf1()

Optionally one can specify  interpolate  flag to define the interpolation rules.

The obtained  TF1  object is defined with three parameters

1. normalization
2. bias
3. scale

It can be used e.g. for visualize interpolated historgam as function or e.g. in  ROOT.TH1.Fit  method for fitting of other historgams

Efficiencies

There are several special cases to get the efficiency-historgams

accepted = ... ## historgam with accepted sample 

rejected = ... ## historgam with rejected sample 

total    = ... ## historgam with total sample 

eff1 = accepted/total          ## value is correct, uncertainties are *NOT* correct 

eff2 = 1/(1+rejected/accepted) ## everything is correct (binomial) 

eff3 = accepted %  total       ## everything is correct (binomial)

eff4 = accepted // total       ## correct binomial, if both histograms are "natural"

Binomial efficiencies

In additon to the methods described above, few more sophisticated treatments of binomial effiiciencies are provided

accepted = ...

total    = ... 

eff1 = accepted.        zechEff ( total ) ## valid for all histograms, including sPlot-weighted 

eff2 = accepted.       binomEff ( total ) ## only for natural histograms

eff3 = accepted.      wilsonEff ( total ) ## only for natural histograms 

eff4 = accepted.agrestiCoullEff ( total ) ## only for natural histograms

For natural historgams only one can use even more sophisticated methods, that evaluates the interval. Each method returns graph, and the
graphs can be visuzalised for comparison:

https://en.wikipedia.org/wiki/Binomial_proportion_confidence_interval


accepted = ...

rejected = ... 

eff1 = accepted.eff_wald                    ( rejected ) 

eff2 = accepted.eff_wilson_score            ( rejected ) 

eff3 = accepted.eff_wilson_score_continuity ( rejected ) 

eff4 = accepted.eff_arcsin                  ( rejected ) 

eff5 = accepted.eff_agresti_coull           ( rejected ) 

eff6 = accepted.eff_jeffreys                ( rejected ) 

eff7 = accepted.eff_clopper_pearson         ( rejected )

All of this functions have an optional argument  interval  that defines the confidence interval, the default value is
 interval=0.682689492137086  that corresponds to 1 sigma.

Optimal binning?

It is not a rare case when one needs to find the binbing of the histogram that ensures almost equal bin populations. This task could be
solved using  eqaul_bins  method

very_fine_binned_histo = ... ## get the fine binned histograms 

edges1 = fine_binned.equal_edges ( 10 ) ## try to fing binning with 10 almost equally populated bins 

edges2 = fine_binned.equal_edges ( 10 , wmax = 5 ) ## try to fing binning with 10 almost equally populated bins, but avoid bin

s wider than "wmax"



Operations with trees/chains

General

tree = ...

print tree.branches() 

print tree.leaves() 

print 'Number of entries %s' % len ( tree )

For trees with very large number of bracnhes (feature of LHCb) one can improves printout:

from   ostap.logger.logger import multicolumn

print 'Branches: \n%s' % muhlticolumn ( tree.branches() )

Statistic for the given variable/expression

st1 = tree.statVar('m')

st2 = tree.statVar('m','pt>10')

st3 = tree.statVar('m/eff','(pt>10)*trg_eff')

The results are in a form of  WStatEntity , weighted  StatEntity )

ncorr = tree.sumVar('S_sw/eff','pt>10')

Also one can get statistics and covariances for the pair of variables/expressions:

s1 , s2 , cov2 = tree.statCov ( 'pt' , 'p' , 'pt>10' )

Or just simple

mn , mx = tree.minmax('1/eff')

Explicit loops

Explicit loops over the entries in tree/chain are trivial :

for i in  range(len(tree)) : 

    tree.GetEntry(i)

    if tree.pt <  10 : continue 

    print tree.m

But the direct looping looks a bit nicer:

For large number of bracnhes...



for entry in tree : 

    if entry.pt <  10 : continue 

    print entry.m

Note that explciit loops are rather CPU-inefficient and slow. One can drastically improve performance by e.g embedding the cuts in
iterator

for entry in tree.withCuts('pt>10') : 

    print entry.m

One can also specify  first  and  last  entries and display the progress bar

for entry in tree.withCuts('pt>10', last = 10000 , progress =  True ) : 

    print entry.m

Projections

h1 = ...

r  = tree.project ( h1 , 'mass' , 'pt>10' )

The module  ostap.paralell.kisa  provides nice functionality for parallell processing of large chains or huge trees for projections

h1 = ...

long_chain =  ...

huge_tree   =  ...

import ostap.parallel.kisa

r1 = long_chain.pproject ( h1 , 'mass' , 'pt>10' ) 

r2 = huge_tree .pproject ( h1 , 'mass' , 'pt>10' ) 

For long chains it makes parallelizaion on per-tree level, and for huge trees it split the tree into chunks and parallelization is applied
on per-chunk level.

Data, Data2 and DataAndLumi

There is useful way to collect many ROOT files into single chains, avoiding non-existent, broken and invalid trees (that is not so rare for
the outptu of Ganga)

from   ostap.trees.data import DataAndLumi as Data  

ganga = '/afs/cern.ch/work/i/ibelyaev/public/GANGA/workspace/ibelyaev/LocalXML'

patterns_Y = [

  ganga + '/319/*/output/CY.root' , ## 2k+11,down

  ganga + '/320/*/output/CY.root' , ## 2k+11,up

  ganga + '/321/*/output/CY.root' , ## 2k+12,down

  ganga + '/322/*/output/CY.root' , ## 2k+12,up

 ]

data_D0Y = Data ( 'YD0/CY' , patterns_Y )

print data_D0Y

chain = data_D0Y.chain 

lumi  = data_D0Y.getLumi()

For loooong chains or huge trees...



Or they can be accumulated separately, and combined later:

from   ostap.trees.data   import DataAndLumi as Data  

ganga  = '/afs/cern.ch/work/i/ibelyaev/public/GANGA/workspace/ibelyaev/LocalXML'

d2011d = Data( 'YD0/CY' ,  ganga + '/319/*/output/CY.root' ) ## 2k+11,down

d2011u = Data( 'YD0/CY' ,  ganga + '/320/*/output/CY.root' ) ## 2k+11,up

d2012d = Data( 'YD0/CY' ,  ganga + '/321/*/output/CY.root' ) ## 2k+12,down

d2012u = Data( 'YD0/CY' ,  ganga + '/322/*/output/CY.root' ) ## 2k+12,up

d2011  = d2011d + d2011u 

d2012  = d2012d + d2012u

runI   = d2011  + d2011



Persistency

 ostap.io.zipshelve 

Ostap offers very nice&efficient way to store the objects in persistent dbase. This persistency is build around  shelve  module and differs
in two way

1. the conntent of payload is compressed, using  zlib  module making the data base very compact
(optionally) the whole database can ve further  gzip 'ed using  gzip  module, if the extension  .gz  is provided. It makes data
banse even more compact.

2. in addition to the native  dict  interface from  shelve , more extensiveinterface with more methods is supported.

Create database and write objects to it:

a = ...

import ostap.io.zipshelve as DBASE 

with DBASE.open ( 'my_dbase.db' ) as db : ## create DBASE 

  db.ls() 

  db['a'] =  a

  db['histo'] = ROOT.TH1D('h1','',10,0,1)

Reading objects from database

with DBASE.open ( 'my_dbase.db' , 'read') as db : ## read DBASE 

  db.ls() 

  b  = db['a'] 

  h2 = db['histo']

One can store in database all pickable objects, that means all python objects, all (serializeable)  ROOT  objects. All  C++  objects with
 LCG/Reflex/Cint -dictionaries are also could be stored database. In practice, everything is storable, including complex combination of
python&C++ objects, like dictionary of historgams and python classed, inherited from  C++ -base classes.

Plain  ROOT.TFile 
Ostap adds some decorations even for the plain  ROOT.TFile , making its interface more pythonic:

rfile = ...

obj   = rfile['A/B/C/myobj']     ## READ  object form the file/directory

rfile['A/B/C/myobj2'] = object2  ## WRITE object to the file/directory 

obj  = rfile.A.B.C.myobj              ## another way to access to the object

obj  = rfile.get ( 'A/B/C/q' , None ) ## one more way to get object 

for obj in rfile : print obj          ## loop over all objects in file

for key,obj in rfile.iteritems() : print key, obj             ## another loop

for key,obj in rfile.iteritems( ROOT.TH1 ) : print key, obj   ## advanced loop, get only histograms 

for k in rfile.keys()     : print k   ## get all keys and loop over them 

for k in rfile.iterkeys() : print k   ## loop over all keys in the file

del rfile['A/B']                      ## delete the object from the file

rfile.rm ( 'A/B' )                    ## delete the object from the file

if 'A/MyHisto' in rfile          : print 'OK!' ## check presence of the key

if rfile.has_key ( 'A/MyHisto' ) : print 'OK!' ## check presence of the key

with ROOT.TFile('aa.root') as rfile : rfile.ls() ## context manager protocol

 RootOnlyShelve 

The module  ostap.io.rootshelve  offers the thin wrapper over  ROOT.TFile  that implement  shelve -interface. As a resutl one gets a
ligth database build a top of underlying  ROOT.TFile , where  ROOT -objects could be stored:

https://docs.python.org/2/library/shelve.html
https://docs.python.org/2/library/zlib.html
https://docs.python.org/2/library/gzip.html


from ostap.io.rootshelve import RooOnlyShelf

db = RooOnlyShelf('mydb.root','c')

h1 = ...

db ['histogram'] = h1

db.ls()

 RootShelve 

The module  ostap.io.rootshelve  offers also more sophisticated wrapper over  ROOT.TFile  that also implements  shelve -interface and
able to store ROOT and any other pickable objects

from ostap.io.rootshelve import RootShelf

db = RootShelf('mydb.root','c')

h1 = ...

db ['histogram'] = h1

db ['histogramlist'] = h1,h2,h3

db.ls()

For non- ROOT  objects, database actually stores them as  ROOT::TString  objects carrying their pickle representation
with on-flight removal/substitutions of some magic symbol sequences, since  ROOT::TString  is not a real  BLOB .

In details ...



More on Histograms
Histogram parameterization



Histogram parameterization
Often one needs to parameterize the historgam in terms of some predefined function or expansion - e.g. parameterize the efficiency.
Ostap offers a wide range of embedded parameterization

in terms of Bernstein polynomials
simple Bernstein sum, aka Bezier sum
even Bernstein sum, such as  f(x)=f(2*x0-x) , where  x0=0.5*(xmin+xmax) 
non-negative Bernstein sum
non-negative monothonic Bernstein sum
non-negative monothonic convex or concave Bernstein sum
non-negative convex or concave Bernstein sum

in term of Legendre polynomials
in term of Chebyshev polynomials
in terms of Fourier series
in terms of Fourier cosine series
in terms of Basic splines

non-negative B-spline
non-negative monothonic B-spline
non-negative monothonic convex or concave B-spline
non-negative convex or concave B-spline

From technical side, there are three branches of methods

methods that uses only histogram values:
these are safe, robust but they ignore the uncertainties

methods that relies on  ROOT.THF1.Fit 
typically not very good CPU performance
sometimes fragile

methods that relies on  RooFit 
often the best series of methods

Simple parameterization

This group of methods allows to make easy and robust histogram parameterization, ignooring histogram unncertainties

histo  = ...

b1 = histo.bernstein_sum     (  6 ) ## parameterize as degree-6 Bernstein sum

b2 = histo.bernsteineven_sum (  6 ) ## parameterize as degree-6 Bernstein "even"-sum

l  = histo.legendre_sum      (  6 ) ## parameterize as degree-6 Legendre sum

ch = histo.chebyshev_sum     (  6 ) ## parameterize as degree-6 Chebyshev sum

f  = histo.fourier_sum       ( 12 ) ## parameterize as order-12 Fourier sum

c  = histo.cosine_sum        ( 12 ) ## parameterize as order-12 Fourier Cosine sum

 ROOT.TH1.Fit -based parameterizations

These methods typically have not very good CPU performance, and sometiems are fragile, but they allow more accurate treatment of
parameteriztaions, in particular them takes into account the uncertainties in the historgam.



histo  = ...

b1  = histo.bernstein     (  6 ) ## parameterize as degree-6 Bernstein sum

b2  = histo.bernsteineven (  6 ) ## parameterize as degree-6 Bernstein "even"-sum

l   = histo.legendre      (  6 ) ## parameterize as degree-6 Legendre sum

ch  = histo.chebyshev     (  6 ) ## parameterize as degree-6 Chebyshev sum

f   = histo.fourier       ( 12 ) ## parameterize as order-12 Fourier sum

c   = histo.cosine        ( 12 ) ## parameterize as order-12 Fourier Cosine sum

m   = histo.polynomial    (  6 ) ## parameterize as simple degree-6 monomial sum

p1  = histo.positive      (  6 ) ## parameterize as degree-6 non-negative Bernstein sum 

p2  = histo.positiveeven  (  6 ) ## parameterize as degree-6 non-negative even Bernstein sum 

m1  = histo.monothonic    ( 6 , increasing = False ) ## parameterize as degree-6 non-negative decreasing Bernstein sum 

m2  = histo.monothonic    ( 6 , increasing = True  ) ## parameterize as degree-6 non-negative increasing Bernstein sum

c1  = histo.convex        ( 6 , increasing = False , convex = True  ) ## parameterize as degree-6 non-negative decreasing conv

ex  Bernstein sum 

c2  = histo.convex        ( 6 , increasing = False , convex = False ) ## parameterize as degree-6 non-negative decreasing conc

ave Bernstein sum 

c3  = histo.convex        ( 6 , increasing = True  , convex = True  ) ## parameterize as degree-6 non-negative increasing conv

ex  Bernstein sum 

c4  = histo.convex        ( 6 , increasing = True  , convex = False ) ## parameterize as degree-6 non-negative increasing conc

ave Bernstein sum 

cc1 = histo.convexpoly    ( 6 ) #  parameterize as degree-6 non-negative convex  Bernstein sum 

cc2 = histo.concavepoly   ( 6 ) #  parameterize as degree-6 non-negative concave Bernstein sum

Various types of splines are also provided

s1 = histo.bSpline ( degree=3 , knots = 2 ) ## parameterize as 3d order spline with 2 inner (uniform) knots 

s2 = histo.bSpline ( degree=2 , knots = [0.1,0.4,0.8,0.9] ) ## parameterize as 3d order spline with 4 inner (non-uniform) knot

s

and similarly for

non-negative spline  pSpline ,
non-negative monothonic spline  mSpline ,
non-negative monothonic convex or concave spline  cSpline ,
non-negative convex spline  convexSpline ,
non-negative concave spline  concaveSpline .

 RooFit -based parameterizations

r1  = histo.pdf_positive           ( 5 ) ## parameterize and non-negative degree-5 Bernstein sum

r2  = histo.pdf_positiveeven       ( 5 ) ## parameterize and non-negative degree-5 even Bernstein polynomial 

r3  = histo.pdf_increasing         ( 5 ) ## parameterize and non-negative degree-5 increasing Bernstein polynomial 

r4  = histo.pdf_decreasing         ( 5 ) ## parameterize and non-negative degree-5 decreasing Bernstein polynomial 

r5  = histo.pdf_convex_increasing  ( 5 ) ## parameterize and non-negative degree-5 convex  increasing Bernstein polynomial 

r6  = histo.pdf_convex_decreasing  ( 5 ) ## parameterize and non-negative degree-5 convex  decreasing Bernstein polynomial 

r7  = histo.pdf_concave_increasing ( 5 ) ## parameterize and non-negative degree-5 concave increasing Bernstein polynomial 

r8  = histo.pdf_concave_decreasing ( 5 ) ## parameterize and non-negative degree-5 concave decreasing Bernstein polynomial 

r9  = histo.pdf_concavepoly        ( 5 ) ## parameterize and non-negative degree-5 concave Bernstein polynomial 

r10 = histo.pdf_convexpoly         ( 5 ) ## parameterize and non-negative degree-5 convex  Bernstein polynomial

Similarly there are methods that provdies the parameterization in terms of splines :

 pdf_pSpline  : non-negative b-spline
 pdf_mSpline  : non-negative monothonic b-spline
 pdf_cSpline  : non-negative monothonic concave or convex b-spline
 pdf_convexSpline  : non-negative monothonic convex b-spline
 pdf_concaveSpline  : non-negative monothonic concave b-spline
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Decorations
Ostap decorates many  ROOT.RooFit  classes, adding more convinient methods to them.

 RooArgList  and  RooArgSet 
All these classes have got set of additional python-like methods for iteration, extension, addition, elemtn access checking the content etc...
Also several methods to provide more coherent interfaces (e.g.  add  vs  Add ) are added.
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1

2

3

4

5

6

7

8

 # Ostap.PyRoUts             INFO    Zillions of decorations for ROOT/RooFit objects

 Lengths are 2 2 

 'a' : ( 0 +- 0 ) 

 'b' : ( -10 +- 0 ) 

 'b' : ( -10 +- 0 ) 

 'c' : ( 1 +- 0 ) 

  a in l ? True True 

  b in l ? True True 

  c in l ? False False 

  a in l ? False False 

  b in l ? True True 

  c in l ? True True 

 'a' : ( 0 +- 0 )  'b' : ( -10 +- 0 ) 

 'b' : ( -10 +- 0 )  'c' : ( 1 +- 0 ) 

 l1+l1 :    ['a:0.0', 'b:-10.0', 'a:0.0', 'b:-10.0']

 l1+l2 :    ['a:0.0', 'b:-10.0', 'b:-10.0', 'c:1.0']

 l2+l2 :    ('b:-10.0', 'c:1.0')

 l2+l1 :    ('b:-10.0', 'c:1.0', 'a:0.0')

 l1+c :    ['a:0.0', 'b:-10.0', 'c:1.0']

 l2+c :    ('b:-10.0', 'c:1.0')

 l1+d :    ['a:0.0', 'b:-10.0', 'd:-1.0']

 l2+d :    ('b:-10.0', 'c:1.0', 'd:-1.0')

 c+l1 :    ['a:0.0', 'b:-10.0', 'c:1.0']

 c+l2 :    ('b:-10.0', 'c:1.0')

 d+l1 :    ['a:0.0', 'b:-10.0', 'd:-1.0']

 d+l2 :    ('b:-10.0', 'c:1.0', 'd:-1.0')

 import ROOT

 import Ostap.PyRoUts

 

 a  = ROOT.RooRealVar ('a','a',-10,10)

 b  = ROOT.RooRealVar ('b','b',-10)

 c  = ROOT.RooConstVar('c','c',  1)

 d  = ROOT.RooConstVar('d','d', -1)
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RooAbsData and RooDataSet

These methods also have got the extended interface with many useful methods and operators, like e.g. concatenation of datasets  a+b  and
merging them  a*c .

 RooDataSet  class also has go many methods, that are similar to those of  ROOT.TTree , in particular  project  and  draw :

dataset = ... 

dataset.draw('mass','pt>1')  

histo   = ...

dataset.project ( histo , 'mass', 'pt>1' )

Many other methonds like  statVar ,  sumVar  ,  statCov  ,  vminmax  are also the same as for  ROOT.TTree , see above.

 l1 = ROOT.RooArgList    ( a , b )

 l2 = ROOT.RooArgSet     ( b , c )

 

 print 'Lengths are %s %s ' % ( len ( l1 ) , len( l2 ) )

 

 for i in l1 : print i

 for i in l2 : print i

 

 for l in  ( l1 , l2 ) :

     print ' a in l ? %s %s '  % ( a in l , 'a' in l )   

     print ' b in l ? %s %s '  % ( b in l , 'b' in l ) 

     print ' c in l ? %s %s '  % ( c in l , 'c' in l ) 

 

 

 print l1[0]   , l1[1]

 print l2['b'] , l2['c']

 

 print 'l1+l1 :    %s'  % ( l1 + l1 )

 print 'l1+l2 :    %s'  % ( l1 + l2 )

 print 'l2+l2 :    %s'  % ( l2 + l2 )

 print 'l2+l1 :    %s'  % ( l2 + l1 )

 

 print 'l1+c :    %s'  % ( l1 + c )

 print 'l2+c :    %s'  % ( l2 + c )

 print 'l1+d :    %s'  % ( l1 + d )

 print 'l2+d :    %s'  % ( l2 + d )

 

 print 'c+l1 :    %s'  % ( c + l1 )

 print 'c+l2 :    %s'  % ( c + l2 )

 print 'd+l1 :    %s'  % ( d + l1 )

 print 'd+l2 :    %s'  % ( d + l2 )



s1    = dataset.statVar ('eff') 

s2    = dataset.sumVar  ('eff') 

r     = dataset.statCov ('eff','pt') 

mn,mx = dataset.vminmax ('eff')

RooFitResult

The class  RooFitResult  get many decorations that allow to access fit results

result = ...

par1 = result.params()  ## get all floating parameters 

par2 = result.params( float_only = False ) ## all parameters 

a,v  = result.param ( 'a' )      ## par by name 

a,v  = result.param (  a  )      ## par by RooFit object itself 

p    = result.a                 ## par as attribute 

for par in result :   print par                ## iteration 

for name,par in result.iteritems() : print par ## iteration

print result.cov  ( 'a' , 'b' )   ## get the covariance submatrix  

print result.corr ( 'a' , 'b'  )  ## get the correlation coefficient

Also the simple math with fiting parameters is supported

result = ...

s = result.sum       ('S','B' ) ## S+B

d = result.divide    ('S','B' ) ## S/B

s = result.subtract  ('B','B1') ## B-B1

m = result.multiply  ('A','B' ) ## A*B 

f = result.fraction  ('S','B' ) ## S/(S+B)

RooRealVar & friends

Few simple operations are added to simplify the calculations with  RooRealVar  objects:

x = ROOT.RooRealVar( ... )

x + 10 

x - 10 

x * 10 

x / 10 

10 + x 

10 - x 

10 * x 

10 / x

x += 2 

x -= 2 

x *= 2 

x /= 2 

x ** 3



PDFs and the basic models
Ostap provides set of useful wrapper and helper class that drastically simplify the construction and manipulations with  RooAbsPdf -
objects.

E.g. consider the simplest case - creation of the Gaussian PDF using the standard way the standard way:

x     = ROOT.RooRealVar ('x'    ,'x'   ,2,3) 

mean  = ROOT.RooRealVar ('mean' ,'mean' ,3.100,3.080,3.120) 

sigma = ROOT.RooRealVar ('sigma','sigma',0.015,0.010,0.025) 

bare  = ROOT.RooGaussian('Gauss','Gaussian', x , mean , sigma ) ## <--- HERE

In ostap it can be done in a bit simpler way

gauss = Gauss_pdf  ( 'Gauss' , 

                        xvar  = ( 2 , 3 ) , 

                      mean  = ( 3.100 , 3.080 , 3.120 ) ,

                      sigma = ( 0.015 , 0.010 , 0.025 ) )

gauss.draw() ## and one can immediately visualize the model

There are may ways to define parameter

1. One can use the existing  RooAbsReal  object, e.g.  RooRealVar  or  RooConstVar :

mean  = ROOT.RooRealVar ('mean' ,'mean' ,3.100,3.080,3.120) 

gauss = Gauss_pdf  ( 'Gauss' , 

                  xvar  = ( 2 , 3 ) , 

                mean  = mean , ## <--- HERE 

                sigma = ( 0.015 , 0.010 , 0.025 ) )

2. One can use the plain number  value , 2- or 3-element tuple  (minval,maxval)  or  (value, minval,maxval) . In this case the
variable of the type  RooRealVar  will be automatically created using this specification. (In case of the plain number, the
corresponding parameter will be fixed in the fit).

gauss = Gauss_pdf  ( 'Gauss' , 

                   xvar  = ( 2 , 3 ) ,                 ## <-- HERE 

                 mean  = ( 3.100 , 3.080 , 3.120 ) , ## <-- HERE 

                 sigma =   0.015 )                   ## <-- HERE 

For all models, all known parameter are accessible (and documented) as python property

gauss = ...

help(gauss.xvar)

print gauss.sigma 

help(gauss.mean)

There are many predefined models, accesible via  ostap.fitting.models  module:

import ostap.fitting.models as Models

help(Models)

How to define parameter?



Base class  PDF 
All pstap-based fit models and PDFs (directy or indirectly) inherit from python base class  PDF , that provides great additional
functionality, in particular the methods  fitTo  and  draw  that simplfy the fitting procedure itself and visualzation of the results:

The method  fitTo 

gauss   = Gauss_pdf ( ... ) 

dataset = ....

result , frame = gauss.fitTo ( dataset , silent = True , reFit = 2 ) 

print 'FitResults: %s' % result

All the native  RooFit  commands can be specified as optional arguments, as well as many commands specific for ostap, e.g.  reFit=2 
above means in case of fit failure, try to refit it (up to 2 times), and the meaning of  silent=True  is obvious.

The method  draw 

gauss   = Gauss_pdf ( ... ) 

dataset = ....

result , frame = gauss.fitTo ( dataset , silent = True , reFit = 2 ) 

print 'FitResults: %s' % result 

frame = gauss.draw ( dataset , nbins = 100 )

Fitting and vizualisation can be combined:

gauss   = Gauss_pdf ( ... ) 

dataset = ....

result , frame = gauss.fitTo ( dataset , draw  = True , nbins = 100 ) ## draw it after the fit

Access to the underlying  RooAbsPdf  object

The access to the underlying bare  RooAbsPdf -object can be done (if needed) via the propety  pdf 

gauss = Gauss_pdf ( ... ) 

root_pdf  = gauss.pdf

Other methods

 PDF  class is equipped with many other useful methods:

 fitHisto : The method  fitTo  can be blindly applied not only to  RooDataSet -objects, but also to the histograms:

histo = ...

r, f   = gauss.fitTo ( histo , draw = True )

However the dedicated method  fitHisto  sometimes could be more usefu

histo = ...

gauss.fitHisto ( histo , draw = True )

 draw_nll : vizualize NLL-scans and LL-profiles

r , f = gauss.fitTo ( dataset , draw = False )

nll     , f1 = gauss.draw_nll ( 'sigma' ,  dataset )                  ## NLL

profile , f2 = gauss.draw_nll ( 'sigma' ,  dataset , profile = True ) ## PROFILE

 generate  : tiny but useful wrapper for  RooAbsPdf::generate 



 minmax  : make the estimates for the minimal and maximal values for the PDF. For some models it is done analytically or
semianalitycally, for remainig models it is done using random shoots.

mn,mx = gauss.minmax( 500000 )

 __call__  : it allows to use  PDF  as simple function

gauss = ...

print gauss( 3.090 ), gauss( 3.100 ), gauss( 3.110 )

Several statistical functions. For some models analytical orsemianalitycal calculations are used, for remnig models numerical
estimations are performed using  scipy 
 rms  : rms for the distribution
 fwhm  : full width at half maximum
 fwhm  : full width at half maximum
 moment  : the moment of the distribution
 central_moment  : the central moment of the distribution
 skewness  : skewness for the distribution
 kurtosis  : kurtosis for the distribution
 mode  : the mode for the distribution
 median  : median value for the distribution
 get_mean  : mean value for the distribution
 cl_symm  : symmetric confidence interval
 cl_asymm  : asymmetric confidence interval
 quantile  : quantile value for the distribution
 integral  : integral for the distribution
 derivative  : derivative of the PDF at the given point

Convolution

Ostap provides helper class that simplify construction of fit models taking into accotun resolution functions:

pdf = ...

cnv_pdf = Convolution_pdf ( 'Cnv            ' , 

                             pdf = pdf        , 

                             resolution = ... )

As  resolution  one can specify

1. Any resolutuon model ( RooAbsPdf )
2. simple number  s , in this case the gaussian resolution model with sigma =  s  will be used
3. Any  RooAbsReal  objetct, it will be used as sigma for gaussian resoltuion model

There are several optional flags

 useFFT=True  : use Fast-Fourier-Transform or plain numerical convolution ?
 nbins=100000  : sampling for Fast-Fourier-Transform
 buffer=0.25  : buffer size for Fast-Fourier-Transform, argument for  setBufferFraction  call
 nsigmas=6  : window size for plain numeric convolution, the argument for  setConvolutionWindow  call

Generic Wrapper Generic1D_pdf

The bare  RooAbsPdf  could be easily converted to ostap-form using the generic wrapper  Generic1D_pdf :



bare = ROOT.RooGaussian('Gauss','Gaussian', x , mean , sigma )

gauss = Generic1D_pdf ( pdf = bare , xvar = x ) 

gauss.draw() ## one can immediately use the full power of ostap-PDF

In a similar way there are generic wrappers for  2D  and  3D -models:

bare2D = ... 

bare3D = ... 

ostap_2d =  Generic2D_pdf ( pdf = bare2D , xvar = x ,  xvar = y ) 

ostap_3d =  Generic2D_pdf ( pdf = bare3D , xvar = x ,  xvar = y , zvar = z )

 1D -models
There are many predefined models, accessible via  ostap.fitting.models  module:

import ostap.fitting.models as Models

help(Models)

Generic backrgound models

Polynomial models

Here the list of the most useful polynomial models:

 PolyPos_pdf  : positive (non-negative) polynomial
 PolyEven_pdf  : positibe (non-negative) symmetric polynomial:  p(x)= p(2*x0-x) , where  x0=0.5*(xmin+xmax) 
 Monotonic_pdf  : positive (non-negative) polynomial with fixed sign of the first derivative: posynomial either non-decreasing or non-
increasing
 Convex_pdf  : positive (non-negative) polynomial with fixed signs of the first (non-decreasing or non-increasing) and second
(convex or concave) derivatives
 ConvexOnly_pdf  : positive (non-negative) polynomial with fixed sign of the second (convex or concave) derivative

Phasespace-based models

Here the list of the most useful phasespace-based models:

 PS2_pdf  : 2-body phase space (no parameters)
 PSLeft_pdf  : Low edge of N-body phase space
 PSRight_pdf  : High edge of L-body phase space from N-body decays
 PSNL_pdf  : approximation for L-body phase space from N-body decays
 PS23L_pdf  : 2-body phase space from 3-body decays with orbital momenta

Polynomial-based models

 Bkg_pdf  : The exponential function, modulated by the positive polynomial. In practice it is the most useful function to describe the
combinatorial background
 PSPol_pdf  : L-body phase space from N-body decays modulated by a positive polynomial
 Sigmoid_pdf  : sigmoid function ( atanh ) modulated by the positive polynomial
 TwoExpoPoly_pdf  : difference of two exponents, modulated by the positive polynomial

Spline-based models

The models, based on B-splines :

 PSpline_pdf  : positive (non-negative) spline



 MSpline_pdf  : positive (non-negative) monothonic (non-decreasing or non-increasing) spline
 CSpline_pdf  : positive (non-negative) monothonic (non-decreasing or non-inclreasing) convex or concave spline
 CPSpline_pdf  : positive (non-negative) convex or concave spline

Generic signal models

The signal-like models (peaks):

'Gauss_pdf'              , ## simple     Gauss

'CrystalBall_pdf'        , ## Crystal-ball function

'CrystalBallRS_pdf'      , ## right-side Crystal-ball function

'CB2_pdf'                , ## double-sided Crystal Ball function    

'Needham_pdf'            , ## Needham function for J/psi or Y fits 

'Apolonios_pdf'          , ## Apolonios function         

'Apolonios2_pdf'         , ## Apolonios function         

'BifurcatedGauss_pdf'    , ## bifurcated Gauss

'DoubleGauss_pdf'        , ## double Gauss

'GenGaussV1_pdf'         , ## generalized normal v1  

'GenGaussV2_pdf'         , ## generalized normal v2 

'SkewGauss_pdf'          , ## skewed gaussian (temporarily removed)

'Bukin_pdf'              , ## generic Bukin PDF: skewed gaussian with exponential tails

'StudentT_pdf'           , ## Student-T function 

'BifurcatedStudentT_pdf' , ## bifurcated Student-T function

'SinhAsinh_pdf'          , ## "Sinh-arcsinh distributions". Biometrika 96 (4): 761

'JohnsonSU_pdf'          , ## JonhsonSU-distribution 

'Atlas_pdf'              , ## modified gaussian with exponenital tails 

'Slash_pdf'              , ## symmetric peakk wot very heavy tails 

'RaisingCosine_pdf'      , ## Raising  Cosine distribution

'QGaussian_pdf'          , ## Q-gaussian distribution

'AsymmetricLaplace_pdf'  , ## asymmetric laplace 

'Sech_pdf'               , ## hyperboilic secant  (inverse-cosh) 

'Logistic_pdf'           , ## Logistic aka "sech-squared"   

#

## pdfs for "wide" peaks, to be used with care - phase space corrections are large!

# 

'BreitWigner_pdf'      , ## (relativistic) 2-body Breit-Wigner

'Flatte_pdf'           , ## Flatte-function  (pipi)

'Flatte2_pdf'          , ## Flatte-function  (KK) 

'LASS_pdf'             , ## kappa-pole

'Bugg_pdf'             , ## sigma-pole

'Swanson_pdf'          , ## Swanson's S-wave cusp 

##

'Voigt_pdf'            , ## Voigt-profile

'PseudoVoigt_pdf'      , ## PseudoVoigt-profile

'BW23L_pdf'            , ## BW23L

 2D  and  3D -cases
For  2D  and  3D  cases there are base classes  PDF2  and  PDF3  that in turn inhetic from  PDF  and gets all the nice functionality. Of
course several new method specific for  2D  and  3D -cases are added and th ebehaviosu of some  1D -specific methods is fixed.



Generic signal models
The signal-like models (peaks):

Narrow signals :
 Gauss_pdf  : simple Gauss
 CrystalBall_pdf  : Crystal Ball function
 CrystalBallRS_pdf  : right-side Crystal Ball function
 CB2_pdf  : double-sided Crystal Ball function
 Needham_pdf  : Needham function for J/psi or Upsilon fits
 Apolonios_pdf  : Apolonios function
 Apolonios2_pdf  : Apolonios function
 BifurcatedGauss_pdf  : bifurcated Gaussian
 DoubleGauss_pdf  : double Gaussian
 GenGaussV1_pdf  : generalized Gaussian v1
 GenGaussV2_pdf  : generalized Gaussian v2
 SkewGauss_pdf  : _skewed Gaussian
 Bukin_pdf  : generic Bukin PDF: skewed gaussian with exponential tails
 StudentT_pdf  : Student` T-function
 BifurcatedStudentT_pdf  : bifurcated Student` T-function
 SinhAsinh_pdf  : Sinh-arcsinh distribution
 JohnsonSU_pdf  : Jonhson-SU distribution
 Atlas_pdf  , modified Gaussian with exponenital tails
 Slash_pdf  , symmetric peak with very heavy tails
 RaisingCosine_pdf  , Raising Cosine distribution
 QGaussian_pdf  , Q-Gaussian distribution
 AsymmetricLaplace_pdf  , asymmetric Laplace
 Sech_pdf  , hyperboilic secant (inverse-cosh)
 Logistic_pdf  , Logistic aka "sech-squared"

"Wide" peaks
These PDF are useful to describe wide peaks with the natural width. (Keep in miid that phase space corrections and resoltuion effect could
be large)

 BreitWigner_pdf  : (relativistic) 2-body Breit-Wigner
 Flatte_pdf  : Flatte function (pipi)
 Flatte2_pdf  : Flatte function (KK)
 LASS_pdf  : kappa-pole
 Bugg_pdf  : sigma-pole
 Swanson_pdf  : Swanson`s S-wave cusp
 Voigt_pdf  : Voigt-profile
 PseudoVoigt_pdf  : PseudoVoigt-profile
 BW23L_pdf  : BW23L



Generic backrgound models
Here is incomplete list of background-like models - the models that often could be used to describe the background distribution

Polynomial models

Here the list of the most useful polynomial models:

 PolyPos_pdf  : positive (non-negative) polynomial
 PolyEven_pdf  : positibe (non-negative) symmetric polynomial:  p(x)= p(2*x0-x) , where  x0=0.5*(xmin+xmax) 
 Monotonic_pdf  : positive (non-negative) polynomial with fixed sign of the first derivative: posynomial either non-decreasing or non-
increasing
 Convex_pdf  : positive (non-negative) polynomial with fixed signs of the first (non-decreasing or non-increasing) and second
(convex or concave) derivatives
 ConvexOnly_pdf  : positive (non-negative) polynomial with fixed sign of the second (convex or concave) derivative

Phasespace-based models

Here the list of the most useful phasespace-based models:

 PS2_pdf  : 2-body phase space (no parameters)
 PSLeft_pdf  : Low edge of N-body phase space
 PSRight_pdf  : High edge of L-body phase space from N-body decays
 PSNL_pdf  : approximation for L-body phase space from N-body decays
 PS23L_pdf  : 2-body phase space from 3-body decays with orbital momenta

Polynomial-based models

 Bkg_pdf  : The exponential function, modulated by the positive polynomial. In practice it is the most useful function to describe the
combinatorial background
 PSPol_pdf  : L-body phase space from N-body decays modulated by a positive polynomial
 Sigmoid_pdf  : sigmoid function ( atanh ) modulated by the positive polynomial
 TwoExpoPoly_pdf  : difference of two exponents, modulated by the positive polynomial

Spline-based models

The models, based on B-splines :

 PSpline_pdf  : positive (non-negative) spline
 MSpline_pdf  : positive (non-negative) monothonic (non-decreasing or non-increasing) spline
 CSpline_pdf  : positive (non-negative) monothonic (non-decreasing or non-inclreasing) convex or concave spline
 CPSpline_pdf  : positive (non-negative) convex or concave spline



Other useful models
 GammaDist_pdf  : Gamma-distributuon in shape/scale parameterization
 GenGammaDist_pdf  : Generalized Gamma-distribution
 Amoroso_pdf  : another view of generalized Gamma distribution
 LogGammaDist_pdf  : Gamma-distributuon in shape/scale parameterization
 Log10GammaDist_pdf  : Gamma-distributuon in shape/scale parameterization
 LogGamma_pdf 

 BetaPrime_pdf  : Beta-prime distribution
 Landau_pdf  : Landau distribution
 Argus_pdf  : ARGUS distribution
 TwoExpos_pdf  : difference of two exponents
 Gumbel_pdf  : Gumbel distributions
 Weibull_pdf  : Weibull distributions

Useful to describe pt-spectra:

 Tsallis_pdf  : Tsallis PDF
 QGSM_pdf  : QGSM PDF



Useful 2D-background models
2D-models useful to describe non-factorazable ( f(x,y)!=f(x)*f(y) ) background:

 PolyPos2D_pdf  : positive (non-negative) polynomial in 2D
 PolyPos2Dsym_pdf  : positive (non-negative) symmetric polynomial in 2D
 PSPol2D_pdf  : product of phase spaces functions, modulated with 2D polynomial
 PSPol2Dsym_pdf  : symmetric product of phase spaces, modulated with 2D polynomial
 ExpoPSPol2D_pdf  : sxponential times phase space times positive 2D-polynomial
 ExpoPol2D_pdf  : product of exponents times positive 2D-polynomial
 ExpoPol2Dsym_pdf  : symmetric version of above
 Spline2D_pdf  : 2D-generic positive (non-negative) spline
 Spline2Dsym_pdf  : 2D symmetric positive (non-negative) spline



Useful 3D-background models
3D-models useful to describe non-factorazable ( f(x,y,z)!=f(x)*f(y)*f(z) ) background:

 PolyPos3D_pdf  : positive (non-negative) polynomial in 3D
 PolyPos3Dsym_pdf  : positive (on-negative) symmetric polynomial in 3D
 PolyPos3Dmix_pdf  : positive partly symmetric (x<-->y) polynomial in 3D



Compound fit models

 1D -case
Ostap offers a very easy way to build the compound fit models from the individual components. E.g.the case of the trivial fit model that
consists of one signal and one background components:

signal      = ... 

background  = ...

model    = Fit1D ( signal = signal , background = backround ) ## <-- HERE! 

dataset  = ...

result , frame = model.fitTo ( dataset , draw = True ) ## fit and vizualize

The fit model can contains several signal and backround components, and also other components :

model    = Fit1D ( signal = signal ,

                   background       = backround , 

                   othersignals     = [ ... ]   , 

                   otherbackgrounds = [ ... ]   , 

                   others           = [ ... ]   )

In this case several signal, backgrounds and/or others components can be combined into single signal, backround and/or others
components:

model    = Fit1D ( combine_signals     = True , 

                   combine_backgrounds = True , 

                   combine_others      = True , ... )

In practice it is very convinients approach is several signal/background/other componens are specified.

On default extended `RooAddPdf' fit model is created, however , one can force non-extended model:

model    = Fit1D ( extended = False , ... )

In this case one can also instruct the class  Fit1D  to create recursive (default) or non-recursive fit fractions:

model    = Fit1D ( extended = False , recursive = False , ... )

All components (signal/background/others) can be specified as ostap-based models. Also one can provide them in a form of bare
 RooAbsPdf , but for this case one needs to provide also  xvar -variable

mass  = ROOT.RooRealVar('mass','mass',2,3)

gauss = ROOT.RooGaussian( 'Gauss', 'Gauss', mass , ... )

model = Fit1D( signal = gauss , xvar = mass , ... )

For background components there is also an alternative way to specify it:

 None  :  RooPolynomial  of zero degree (uniform distribution) will be created and used as background component
Attention:  background=None  does not imply the absence of background component

negative integer  n  : ostap model  PolyPos_pdf  will be created and used as background component. This model corresponds to the
positive polynomial of degree  -n . The polinomial is constrained to be non-negative for the whole considered interval of  xvar .
This constraint allows rather robust and stable fits, especialy for the low-statistics case.
non-negative integer  n : ostap model  Bkg_pdf , that is a product of the exponential function and the positive polynomial of degree
 n  will be created and used as background component. Note:

The  background=0  case corresponds to simple exponential backtround



Since the polynomial is constrained to be non-negative this PDF is very stable and robust, especually for the low-statistic case,
as  RooAbsReal  object, in this case it is interpreted as the exponental slope

Actually, the separation into signal, background and other components is a bit arbitrary. However it is helpful for

to define the meaningful names for the fit parameters
to separate different components for visualisation, since different styles (lines, colors, etc) are used for differentr categories

Access to the model components

The individual components can be accessed using python properties

gaudd = Gauss_pdf ( ... 

model = Fit1D ( signal = gauss , ... ) 

print model.signal.sigma  ##   get sigma of Gauss 

print model.signal.mean   ##   get mean  of Gauss

Fit parameters

The parametters of the created  RooAddPdf  can be accessed via python properties, e.g. for extended fits:

gaudd = Gauss_pdf ( ... 

model = Fit1D ( signal = gauss , ... ) 

print 'signal yield(s):' , model.S   

print 'background(s):'   , model.B

print 'others: '         , model.C

model.S = 100   ## set value of signal component to be 100 events 

model.B.fix(50) ## fix the yield of the background component at 50  events 

model.draw()

Depending on the number of corresponsing componens and flags  combine_signals ,  combine_backgrounds ,  combine_others  these
properties can be scalar values or arrays/tuples.

For  combine_signal=True ,  combine_backgrounds =True ,  combine_others=True  cases oen also gets properrties  fS  ,  fB  and  fC  that
corresponds to the fractions of individual signal/backgroud/others components for the compound signal/ signal/backgroud/others.

For non-extended fits, the main parameters are fractions:

gaudd = Gauss_pdf ( ... 

model = Fit1D ( signal = gauss , ... , extended = False ) 

...

print 'fractions:' , model.F

Extended multi-component fit model

model_ext1 = Models.Fit1D (

    name             = 'EXT1'     , 

    signal           =   signal_1 ,

    othersignals     = [ signal_2 , signal_3 ] ,

    background       =   wide_1   ,

    otherbackgrounds = [ wide_2 ] ,

    others           = [ narrow_1 , narrow_2 ] ,

    )

One can define some initial setting for fit-parameters:



model_ext1.S[0].value = 5000

model_ext1.S[1].value = 5000 

model_ext1.S[2].value = 5000 

model_ext1.B[0].value = 1700

model_ext1.B[1].value = 2300 

model_ext1.C[0].value =  500

model_ext1.C[1].value =  400

The fit itself is trivial

r, f = model_ext1.fitTo ( dataset , draw = False , silent = True )

r, f = model_ext1.fitTo ( dataset , draw = False , silent = True )

And accessing fit results is also simple:

print 'Signals               [S]:' , model_ext1.S

print 'Backgrounds           [B]:' , model_ext1.B

print 'Components            [C]:' , model_ext1.C

print 'Fractions             [F]:' , model_ext1.F

print 'Signal fractions     [fS]:' , model_ext1.fS

print 'Background fractions [fB]:' , model_ext1.fB

print 'Component fractions  [fC]:' , model_ext1.fC

print 'Yields           [yields]:' , model_ext1.yields

print 'Fractions     [fractions]:' , model_ext1.fractions

Extended fit model with compound components

model_ext2 = Models.Fit1D (

    name                = 'EXT2'     , 

    signal              =   signal_1 ,

    othersignals        = [ signal_2 , signal_3 ] ,

    background          =   wide_1   ,

    otherbackgrounds    = [ wide_2 ] ,

    others              = [ narrow_1 , narrow_2 ] ,

    #

    combine_signals     = True   , ## <-- HERE 

    combine_backgrounds = True   , ## <-- HERE 

    combine_others      = True   , ## <-- HERE

Setting the initial values of fit parameters is trivial:

model_ext2.S  = 5000

model_ext2.B  = 4200

model_ext2.C  =  700

model_ext2.fS[0].value = 0.33 

model_ext2.fS[1].value = 0.50

model_ext2.fB[0].value = 0.40 

model_ext2.fC[0].value = 0.60

The fit itself and access to fit parameters is the same as above.

Non-extended multi-component fit model with non-recursive fit-fractions



model_ne1 = Models.Fit1D (

    name                = 'NE1'                   , 

    signal              =   signal_1              , 

    othersignals        = [ signal_2 , signal_3 ] ,

    background          =   wide_1   ,

    otherbackgrounds    = [ wide_2 ] ,

    others              = [ narrow_1 , narrow_2 ] ,

    ##

    extended            = False , ## <--- HERE

    recursive           = False   ## <--- HERE 

    )

Setting the initial values of fit-fractions:

model_ne1.F[0].value = 0.25

model_ne1.F[1].value = 0.25

model_ne1.F[2].value = 0.25

model_ne1.F[3].value = 0.08

model_ne1.F[4].value = 0.12

model_ne1.F[5].value = 0.05

The fit itself and access to fit parameters is the same as above.

Non-extended multi-component fit model with recursive fit-fractions

model_ne2 = Models.Fit1D (

    name                = 'NE2'                   , 

    signal              =   signal_1              , 

    othersignals        = [ signal_2 , signal_3 ] ,

    background          =   wide_1   ,

    otherbackgrounds    = [ wide_2 ] ,

    others              = [ narrow_1 , narrow_2 ] , 

    ##

    extended            = False , ## <-- HERE 

    recursive           = True  , ## <-- HERE 

    )

Setting initial fit parameters:

model_ne2.F[0].value = 0.25

model_ne2.F[1].value = 0.33

model_ne2.F[2].value = 0.50

model_ne2.F[3].value = 0.37

model_ne2.F[4].value = 0.74

model_ne2.F[5].value = 0.50

The fit itself and access to fit parameters is the same as above.

Non-extended fit model with compound components and non-recursive fit-fractions



model_ne3 = Models.Fit1D (

    name                = 'NE2'                   , 

    signal              =   signal_1              , 

    othersignals        = [ signal_2 , signal_3 ] ,

    background          =   wide_1   ,

    otherbackgrounds    = [ wide_2 ] ,

    others              = [ narrow_1 , narrow_2 ] , 

    ##

    combine_signals     = True   , ## <--- HERE 

    combine_backgrounds = True   , ## <--- HERE 

    combine_others      = True   , ## <--- HERE 

    ##

    extended            = False  , ## <--- HERE 

    recursive           = False    ## <--- HERE 

    )

Setting the initial values:

model_ne3. F[0].value = 0.75

model_ne3. F[1].value = 0.30

model_ne3.fS[0].value = 0.33

model_ne3.fS[1].value = 0.50

model_ne3.fB[0].value = 0.41

model_ne3.fC[0].value = 0.58

The fit itself and access to fit parameters is the same as above.

Non-extended fit model with compound components and recursive fit-fractions

model_ne4 = Models.Fit1D (

    name                = 'NE4'                   , 

    signal              =   signal_1              , 

    othersignals        = [ signal_2 , signal_3 ] ,

    background          =   wide_1   ,

    otherbackgrounds    = [ wide_2 ] ,

    others              = [ narrow_1 , narrow_2 ] , 

    ##

    combine_signals     = True   , ## <--- HERE 

    combine_backgrounds = True   , ## <--- HERE

    combine_others      = True   , ## <--- HERE 

    ##

    extended            = False  , ## <--- HERE 

    recursive           = True     ## <--- HERE

Setting the initial values:

model_ne4. F[0].value = 0.75

model_ne4. F[1].value = 0.80

model_ne4.fS[0].value = 0.33

model_ne4.fS[1].value = 0.50

model_ne4.fB[0].value = 0.41

model_ne4.fC[0].value = 0.50

The fit itself and access to fit parameters is the same as above.

All the ways to deal with  Fit1D  objects are illustrated here:
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 #!/usr/bin/env python

 # -*- coding: utf-8 -*-

 # =============================================================================

 ## @file TestComponents.py

 #
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 #  tests for various multicomponents models 

 #

 #  @author Vanya BELYAEV Ivan.Belyaeve@itep.ru

 #  @date 2014-05-11

 # =============================================================================

 """Tests for various multicomponent models 

 """

 # =============================================================================

 __version__ = "$Revision:"

 __author__  = "Vanya BELYAEV Ivan.Belyaev@itep.ru"

 __date__    = "2014-05-10"

 __all__     = ()  ## nothing to be imported 

 # =============================================================================

 import ROOT, random

 from   Ostap.PyRoUts import *

 from   Ostap.Utils   import rooSilent 

 # =============================================================================

 # logging 

 # =============================================================================

 from AnalysisPython.Logger import getLogger

 if '__main__' == __name__  or '__builtin__' == __name__ : 

     logger = getLogger ( 'Ostap.TestComponents' )

 else : 

     logger = getLogger ( __name__ )

 # =============================================================================

 logger.info ( 'Test for multi-component models from Analysis/Ostap')

 # =============================================================================

 ## make simple test mass 

 mass    = ROOT.RooRealVar ( 'test_mass' , 'Some test mass' , 0 , 10 )

 

 ## book very simple data set

 varset  = ROOT.RooArgSet  ( mass )

 dataset = ROOT.RooDataSet ( dsID() , 'Test Data set-0' , varset )  

 

 mmin, mmax = mass.minmax() 

 

 ### fill it 

 m1 = VE(3,0.300**2)

 m2 = VE(5,0.200**2)

 m3 = VE(7,0.100**2)

 

 for i in xrange(0,5000) :

     for m in (m1,m2,m3) : 

         mass.value = m.gauss () 

         dataset.add ( varset    )
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 for i in xrange(0,5000) :

     mass.value = random.uniform ( *mass.minmax() ) 

     dataset.add ( varset   )

 

 logger.info ('Dataset: %s' % dataset )  

 import Ostap.FitModels as Models

 

 signal_1 = Models.Gauss_pdf ( 'G1'  , xvar = mass , mean = m1.value() , sigma = m1.error() )

 signal_2 = Models.Gauss_pdf ( 'G2'  , xvar = mass , mean = m2.value() , sigma = m2.error() )

 signal_3 = Models.Gauss_pdf ( 'G3'  , xvar = mass , mean = m3.value() , sigma = m3.error() )

 

 wide_1   = Models.Gauss_pdf ( 'GW1' , xvar = mass , mean = 1.0 , sigma = 2 )

 wide_2   = Models.Gauss_pdf ( 'GW2' , xvar = mass , mean = 9.0 , sigma = 3 )

 

 narrow_1 = Models.Gauss_pdf ( 'GN1' , xvar = mass , mean = 4.0 , sigma = 1 )

 narrow_2 = Models.Gauss_pdf ( 'GN2' , xvar = mass , mean = 6.0 , sigma = 1 )

 

 ## ============================================================================

 logger.info ( 'Test the extended fit with many components' ) 

 model_ext1 = Models.Fit1D (

     name             = 'EXT1'     , 

     signal           =   signal_1 ,

     othersignals     = [ signal_2 , signal_3 ] ,

     background       =   wide_1   ,

     otherbackgrounds = [ wide_2 ] ,

     others           = [ narrow_1 , narrow_2 ] ,

     )

 model_ext1.S[0].value = 5000

 model_ext1.S[1].value = 5000 

 model_ext1.S[2].value = 5000 

 

 model_ext1.B[0].value = 1700

 model_ext1.B[1].value = 2300 

 

 model_ext1.C[0].value =  500

 model_ext1.C[1].value =  400 

 

 r, f = model_ext1.fitTo ( dataset , draw = False , silent = True )

 r, f = model_ext1.fitTo ( dataset , draw = False , silent = True )

 logger.info ( 'Model %s Fit results:\n#%s ' % ( model_ext1.name , r ) ) 

 print 'Signals               [S]:' , model_ext1.S

 print 'Backgrounds           [B]:' , model_ext1.B

 print 'Components            [C]:' , model_ext1.C

 print 'Fractions             [F]:' , model_ext1.F

 print 'Signal fractions     [fS]:' , model_ext1.fS

 print 'Background fractions [fB]:' , model_ext1.fB
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 print 'Component fractions  [fC]:' , model_ext1.fC

 print 'Yields           [yields]:' , model_ext1.yields

 print 'Fractions     [fractions]:' , model_ext1.fractions

 

 

 ## ============================================================================

 logger.info ( 'Test the extended fit with compound components' ) 

 model_ext2 = Models.Fit1D (

     name                = 'EXT2'     , 

     signal              =   signal_1 ,

     othersignals        = [ signal_2 , signal_3 ] ,

     background          =   wide_1   ,

     otherbackgrounds    = [ wide_2 ] ,

     others              = [ narrow_1 , narrow_2 ] ,

     #

     combine_signals     = True   ,

     combine_backgrounds = True   ,

     combine_others      = True   ,    

     )

 model_ext2.S  = 5000

 model_ext2.B  = 4200

 model_ext2.C  =  700

 

 model_ext2.fS[0].value = 0.33 

 model_ext2.fS[1].value = 0.50

 

 model_ext2.fB[0].value = 0.40 

 model_ext2.fC[0].value = 0.60 

 

 r, f = model_ext2.fitTo ( dataset , draw = False , silent = True )

 r, f = model_ext2.fitTo ( dataset , draw = False , silent = True )

 logger.info ( 'Model %s Fit results:\n#%s ' % ( model_ext2.name , r ) ) 

 print 'Signals               [S]:' , model_ext2.S

 print 'Backgrounds           [B]:' , model_ext2.B

 print 'Components            [C]:' , model_ext2.C

 print 'Fractions             [F]:' , model_ext2.F

 print 'Signal fractions     [fS]:' , model_ext2.fS

 print 'Background fractions [fB]:' , model_ext2.fB

 print 'Component fractions  [fC]:' , model_ext2.fC

 print 'Yields           [yields]:' , model_ext2.yields

 print 'Fractions     [fractions]:' , model_ext2.fractions

 

 ## ============================================================================

 logger.info ( 'Test non-extended fit with all components, non-recursive' ) 

 model_ne1 = Models.Fit1D (

     name                = 'NE1'                   , 
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     signal              =   signal_1              , 

     othersignals        = [ signal_2 , signal_3 ] ,

     background          =   wide_1   ,

     otherbackgrounds    = [ wide_2 ] ,

     others              = [ narrow_1 , narrow_2 ] ,

     ##

     extended            = False , 

     recursive           = False 

     )

 

 model_ne1.F[0].value = 0.25

 model_ne1.F[1].value = 0.25

 model_ne1.F[2].value = 0.25

 model_ne1.F[3].value = 0.08

 model_ne1.F[4].value = 0.12

 model_ne1.F[5].value = 0.05

 

 r, f = model_ne1.fitTo ( dataset , draw = False , silent = True )

 r, f = model_ne1.fitTo ( dataset , draw = False , silent = True )

 logger.info ( 'Model %s Fit results:\n#%s ' % ( model_ne1.name , r ) ) 

 print 'Signals               [S]:' , model_ne1.S

 print 'Backgrounds           [B]:' , model_ne1.B

 print 'Components            [C]:' , model_ne1.C

 print 'Fractions             [F]:' , model_ne1.F

 print 'Signal fractions     [fS]:' , model_ne1.fS

 print 'Background fractions [fB]:' , model_ne1.fB

 print 'Component fractions  [fC]:' , model_ne1.fC

 print 'Yields           [yields]:' , model_ne1.yields

 print 'Fractions     [fractions]:' , model_ne1.fractions

 

 ## ============================================================================

 logger.info ( 'Test non-extended fit with all components, recursive' ) 

 model_ne2 = Models.Fit1D (

     name                = 'NE2'                   , 

     signal              =   signal_1              , 

     othersignals        = [ signal_2 , signal_3 ] ,

     background          =   wide_1   ,

     otherbackgrounds    = [ wide_2 ] ,

     others              = [ narrow_1 , narrow_2 ] , 

     ##

     extended            = False , 

     recursive           = True  ,

     )

 

 model_ne2.F[0].value = 0.25

 model_ne2.F[1].value = 0.33
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 model_ne2.F[2].value = 0.50

 model_ne2.F[3].value = 0.37

 model_ne2.F[4].value = 0.74

 model_ne2.F[5].value = 0.50

 

 r, f = model_ne2.fitTo ( dataset , draw = False , silent = True )

 r, f = model_ne2.fitTo ( dataset , draw = False , silent = True )

 logger.info ( 'Model %s Fit results:\n#%s ' % ( model_ne2.name , r ) ) 

 print 'Signals               [S]:' , model_ne2.S

 print 'Backgrounds           [B]:' , model_ne2.B

 print 'Components            [C]:' , model_ne2.C

 print 'Fractions             [F]:' , model_ne2.F

 print 'Signal fractions     [fS]:' , model_ne2.fS

 print 'Background fractions [fB]:' , model_ne2.fB

 print 'Component fractions  [fC]:' , model_ne2.fC

 print 'Yields           [yields]:' , model_ne2.yields

 print 'Fractions     [fractions]:' , model_ne2.fractions

 

 

 ## ============================================================================

 logger.info ( 'Test non-extended fit with compound components, non-recursive' ) 

 model_ne3 = Models.Fit1D (

     name                = 'NE2'                   , 

     signal              =   signal_1              , 

     othersignals        = [ signal_2 , signal_3 ] ,

     background          =   wide_1   ,

     otherbackgrounds    = [ wide_2 ] ,

     others              = [ narrow_1 , narrow_2 ] , 

     ##

     combine_signals     = True   ,

     combine_backgrounds = True   ,

     combine_others      = True   ,

     ##

     extended            = False  ,

     recursive           = False 

     )

 

 model_ne3.F[0].value  = 0.75

 model_ne3.F[1].value  = 0.30

 

 model_ne3.fS[0].value = 0.33

 model_ne3.fS[1].value = 0.50

 

 model_ne3.fB[0].value = 0.41

 model_ne3.fC[0].value = 0.58
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 r, f = model_ne3.fitTo ( dataset , draw = False , silent = True )

 r, f = model_ne3.fitTo ( dataset , draw = False , silent = True )

 logger.info ( 'Model %s Fit results:\n#%s ' % ( model_ne3.name , r ) ) 

 print 'Signals               [S]:' , model_ne3.S

 print 'Backgrounds           [B]:' , model_ne3.B

 print 'Components            [C]:' , model_ne3.C

 print 'Fractions             [F]:' , model_ne3.F

 print 'Signal fractions     [fS]:' , model_ne3.fS

 print 'Background fractions [fB]:' , model_ne3.fB

 print 'Component fractions  [fC]:' , model_ne3.fC

 print 'Yields           [yields]:' , model_ne3.yields

 print 'Fractions     [fractions]:' , model_ne3.fractions

 

 

 ## ============================================================================

 logger.info ( 'Test non-extended fit with compound components, recursive' ) 

 model_ne4 = Models.Fit1D (

     name                = 'NE4'                   , 

     signal              =   signal_1              , 

     othersignals        = [ signal_2 , signal_3 ] ,

     background          =   wide_1   ,

     otherbackgrounds    = [ wide_2 ] ,

     others              = [ narrow_1 , narrow_2 ] , 

     ##

     combine_signals     = True   ,

     combine_backgrounds = True   ,

     combine_others      = True   ,

     ##

     extended            = False  , 

     recursive           = True    

     )

 

 model_ne4.F[0].value  = 0.75

 model_ne4.F[1].value  = 0.80

 

 model_ne4.fS[0].value = 0.33

 model_ne4.fS[1].value = 0.50

 

 model_ne4.fB[0].value = 0.41

 model_ne4.fC[0].value = 0.50

 

 r, f = model_ne4.fitTo ( dataset , draw = False , silent = True )

 r, f = model_ne4.fitTo ( dataset , draw = False , silent = True )

 logger.info ( 'Model %s Fit results:\n#%s ' % ( model_ne4.name , r ) ) 

 print 'Signals               [S]:' , model_ne4.S

 print 'Backgrounds           [B]:' , model_ne4.B
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The corresponding output can be inspected here

 2D -case

Generic  2D -case

Symmetric  2D -case

 3D -case

Generic  3D -case

Symmetric  3D -case

Mixed-symmetry  3D -case

 print 'Components            [C]:' , model_ne4.C

 print 'Fractions             [F]:' , model_ne4.F

 print 'Signal fractions     [fS]:' , model_ne4.fS

 print 'Background fractions [fB]:' , model_ne4.fB

 print 'Component fractions  [fC]:' , model_ne4.fC

 print 'Yields           [yields]:' , model_ne4.yields

 print 'Fractions     [fractions]:' , model_ne4.fractions

 

 

 # =============================================================================

 # The END 

 # =============================================================================



sPlot
Using sPlot is rather trivial in ostap:

dataset = ...

model   = Fit1D ( signal = ... , backgrund = ... ) 

model.fitTo ( dataset )

print datatset   

model.sPlot ( dataset )  ## <--- HERE 

print datatset           ## <--- note appearence of new variables

http://dx.doi.org/10.1016/j.nima.2005.08.106


Using Weighted fits
Often one needs to fit weighted dataset, etg. backrgonud-subtracted
or efficiency_corrected. It is just trivial in ostap:

dataset = ...

dsw     = dataset.makeWeighted ( 'S_sw/eff'   ) ## 

model   = ...

model.fitTo ( dsw , .... , sumw2 = True , ... ) ## <--- HERE



Using Constraints in the fit
Often oen can add soft Gaussian constraint for soem fit parameters, e.g. one can constraing the rsignal resolution:

sigma_MC       = VE( 0.015 , 0.001**2 ) ## 

sigma_cnt      = model.sigma.constrainTo ( sigma_MC , 'sigma_constraint')

my_constraints = ROOT.RooFit.ExternalConstraints ( ROOT.RooArgSet ( sigma_cnt  ) ) 

dataset         = ...

model.fitTo ( dataset , ... , constraints = my_constraints , ....  )

Clearly several constraints can be combined togather

sigma_cnt  = model.sigma.constrainTo ( sigma_MC           , 'sigma_constraint')

peak_cnt   = model.mean .constrainTo ( VE(3.096,0.001**2) , 'mass_constraint' )

my_constraints = ROOT.RooFit.ExternalConstraints ( ROOT.RooArgSet ( sigma_cnt , peak_cnt ) )

For the next version of ostap, one will be able to avoid the explicit creation of  ROOT.RooFit.ExternalConstraint  and  ROOT.RooArgSet 

sigma_cnt  = model.sigma.constrainTo ( sigma_MC           , 'sigma_constraint')

peak_cnt   = model.mean .constrainTo ( VE(3.096,0.001**2) , 'mass_constraint' )

model.fitTo ( dataset , ... , constraints = ( sigma_cnt , peak_cnt ) , ....  )



Tools
There are several tools embedded in Ostap to implement common analysis operations

using  TMVA 
training  TMVA  using chopping approach
Reweighting



Using  TMVA 
Ostap hosts couple of classes, that simplifies the training and using of  TMVA .

Training  TMVA 

tSignal  = ... ## signal     TTree/TChain

tBkg     = ... ## background TTree/TChain

## book TMVA trainer     

from ostap.tools.tmva import Trainer 

trainer = Trainer (

   name    = 'TestTMVA' ,   

   methods = [

   # type                   name   configuration

   ( ROOT.TMVA.Types.kMLP        , 'MLP'        , 'H:!V:EstimatorType=CE:VarTransform=N:NCycles=200:HiddenLayers=N+3:TestRate=

5:!UseRegulator' ) ,

   ( ROOT.TMVA.Types.kBDT        , 'BDTG'       , 'H:!V:NTrees=100:MinNodeSize=2.5%:BoostType=Grad:Shrinkage=0.10:UseBaggedBoo

st:BaggedSampleFraction=0.5:nCuts=20:MaxDepth=2' ) , 

   ( ROOT.TMVA.Types.kCuts       , 'Cuts'       , 'H:!V:FitMethod=MC:EffSel:SampleSize=200000:VarProp=FSmart' ) ,

   ( ROOT.TMVA.Types.kFisher     , 'Fisher'     , 'H:!V:Fisher:VarTransform=None:CreateMVAPdfs:PDFInterpolMVAPdf=Spline2:Nbins

MVAPdf=50:NsmoothMVAPdf=10' ),

   ( ROOT.TMVA.Types.kLikelihood , 'Likelihood' , 'H:!V:TransformOutput:PDFInterpol=Spline2:NSmoothSig[0]=20:NSmoothBkg[0]=20:

NSmoothBkg[1]=10:NSmooth=1:NAvEvtPerBin=50' )

   ] ,

   variables  = [ 'var1' , 'var2' ,  'var3' ] , ## Variables to be used for training 

   signal     = tSignal                       , ## ``Signal'' sample 

   background = tBkg                          , ## ``Background'' sample  

   verbose    = False )

Optionally one can specify also  signal_cuts  and  background_cuts .

Traing  TMVA  itself is trivial, one needs to invoke the method  train :

weights_files = trainer.train ()

It returs the list/tuple of weight- XML -files, the output of  TMVA  trainer. Optionally one can retrieve also the list of _ C++-class -files,
using the proeprty  class_files  or everything together in a form of  tar -file using the property  tar_file :

weight_files = trainer.weight_files ## XML weights  

class_files  = trainer.class_files  ## C++ classes 

tar_file     = trainer.tar_file     ## everything together

Using  TMVA 

To use trained  TMVA  one exploits  TMVA  reader:

from ostap.tools.tmva import Reader

reader = Reader( 

   'MyMLP' ,

   variables     = [ ('var1' , lambda s : s.var1 )   ,

                     ('var2' , lambda s : s.var2 )   ,

                     ('var3' , lambda s : s.var3 ) ] ,

  weights_files = tar_file  )

What is  lambda s : s.var1  here?

https://root.cern.ch/tmva


The the element of the pair is, obviously, the variable name. The second argument is accessor function. It will be applied for 1-
argument call of the method. E.g. in this example, one can apply it to  TTree / TChain / RooAbsData / RooArgSet  and the variable
 var1  from this  TTree / TChain / RooAbsData / RooArgSet  will be used as  'var1'  for the  TMVA . Accessor functions coudl be
trivial, as on this case, but they also can be less trivial:

variables     = [ ('var1' , lambda s : s.rapidity     )   , ## use another name 

                  ('var2' , lambda s : s.pt/1000      )   , ## make some rescaling

                  ('var3' , lambda s : atan2(s.y,s.x) ) ] , ## make more complicated calculations

If one wants to use other objects for 1-argument call, other set of accessor functions need to be supplied. E.g. if data are expected to
be supplied as a  tuple / list / std::vector<...> , one can use

variables     = [ ('var1' , lambda s : s[0] )   , ## use another name 

                  ('var2' , lambda s : s[1] )   , ## make some rescaling

                  ('var3' , lambda s : a[2] ) ] , ## make more complicated calculations

One can also use just the plain list of variable names:

variables     = [ 'var1' , 'var2' , 'var3' ] 

This list will be automatically transformed into

variables     = [ ('var1' , lambda s : getattr( s , 'var1') ) ,

                  ('var2' , lambda s : getattr( s , 'var2') ) ,

                  ('var3' , lambda s : getattr( s , 'var3') ) ]

As  weight_files  arguments one can use either the list of weights-files from the trainer, or, much easier, use the single 'tar'-file from the
trainer. The methods, available from the weight files can be checked as

print reader.methods 

`

And the usage of the reader is rather trivial, e.g. one can explicitly request the responce for certain set of arguments:

v1,  v2,  v3 = .... 

mlp  = reader['MLP']                     ## get  one method 

print 'MLP value is %s'  % mlp ( v1 , v2 ,  v3 )

In practice, one practially always uses it with  TTree / TChain / RooAbsData / RooArgSet , in this case one use 1-argument call, assuming
then proper accessor functions are supplied:

tree = ... ##  the tree 

mlp  = reader['MLP']                     ## get  one method

for i in tree :                          ## loop over the entries 

    print 'MLP value is %s'  % mlp ( i ) ## get the  value



Using chopping for  TMVA  training/using
Chopping is a technique to use the limited set of data for TMVA training. In this approach data are chopped into several categories and for
each category  i  TMV is trained using the remaing  N-1  categories, and the trained  TMVA  is applied to the events from category  i .

Training  TMVA -chopper

The trainig-with-chopping is fairly trivial. First one need to define the number of distinct categories and the function to classify the events
into training categories. E.g. for  TMVA  training

tSignal  = ... ## signal     TTree/TChain

tBkg     = ... ## background TTree/TChain

## book TMVA trainer     

from ostap.tools.chopping import Trainer 

trainer = Trainer (

  N        = N                 , ## ATTENTION! N is number of categories 

  category = "137*evt+813*run" , ## ATTENTION! It is a classification function      

  chop_signal       = False    , ## chop the signal     ?  (default) 

  chop_background   = True     , ## chop the background ?  (default)

  ...

All other arguments of  Trainer  are the same as for regular  TMVA  trainer. Arguments  chop_signal  and  chop_background  defined what
sample (or both) to be chopped. The argument caterory described the integer-valued function, used for classification of events. Actually
trainer construct classification function as  category%N .

For efficient usage of events number of categroeis shoudl be rather large  N>>2 . For the given number of categories  N , the
fraction of events used for  TMVA  training is  (N-1)/N . Therefore with large  N  events are used more efficiently. From other side,
for large  N  the traing time is proportional to  N , while the traing results shodul be more or less independent on  N . It makes
senseless usage of  N>100 . Therefore one gets  2<<N<100 . In practice it is convinient to choose  10<N<20 .

The ideal classification function must be independent on the properties of signal and or background. It should be  pseudorandom 
and provide almost uniform population of categories. It is very easy to achive using the following expression
 (Na*a+Nb*b+Nc*c+...+Nz*z+)%N , where  a ,  b , ... ,  z  are some integer-valued variables from the input  TTree / TChain  (event
number, run-number, GPS time in nanoseconds, number of tracks in event. number of hits in SPD, etc...), and  Na ,  Nb , ...,  Nz 
are prime numbers, that are large enough ( Na>>N ,  Nb>>N , ... ,  Nz>>N ). With such construction, choosing N  to be also a prime
number, one almost guaranteed that events are randomly distributed into  N -categories.

The category population can be checked using setof control historgams:

bc =  trainer.background_categories 

sc =  trainer.signal_categories 

bc[0].Draw() ## show popultion of background categroies

bc[1].Draw() ## the same with  different binning

sc[0].Draw() ## show popultion of signal categroies

sc[1].Draw() ## the same with  different binning

Using  TMVA -chopper

How to choose chopping parameters?



Again one needs to define the classification function for input data. Clealry this function should match the one used in training

category = lambda s :  int ( s.evt*137 + 813*s.run ) % N ## the  classification function  

from ostap.tools.chopping import Reader   ## ATTENTION

reader = Reader(

    N             = N         , ##  number of   categories

    categoryfunc  = category  , ## category 

    ...

All other arguments of  Reader  are the same as for regular  TMVA  reader. The created reader is used exactly in the same way as for no-
chopping-case:

tree = ... ##  the tree 

mlp  = reader['MLP']                     ## get  one method

for i in tree :                          ## loop over the entries 

    print 'MLP value is %s'  % mlp ( i ) ## get the  value

For test and debug purposes one can use it also as a function:

v1,  v2,  v3 = .... 

mlp  = reader['MLP']    ## get  one method 

for i in range ( N ) :  ## loop over   categories 

    print 'MLP value for  categroy %s is %s'  % ( i , mlp ( i , v1 , v2 ,  v3 ) )

And even get the difference between responces for different categories. Clearly the spread of values should be small enough

v1,  v2,  v3 = .... 

mean = mlp.mean ( v1 , v2 , v3 ) ## get a mean-value over  different  categories 

stat = mlp.stat ( v1 , v2 , v3 ) ## get a statistics  (mean,rms, min/max,...) of  responces

For tests and debug



Reweighting
Ostap offers set of utlities to reweight the distributions. Typical use-case is

one has set of data distributions
and simulation does not describe these distributions well, and one needs to reweight simulation to describe all distributions

It is relatively easy procedure in Ostap, however it requires some code writing.

Data and simulated distributions
First, one needs to specify data distributions. It can be done in form of 1D,2D and 3D histograms, or as 1,2, or 3-argument functions or
even all these techniques could be used together. It is important that these data distributions should be strickly positive for the
corresponding range of variables. E.g. in case of histograms, there should be no empty or negative bin content.

hdata_x = ROOT.TH1D ( ... )               ## e.g. use the histogram 

hdata_x = lambda x :  math.exp (-x/10 ) ) ## or use a function 

...

hdata_y = ...

Second, for each data distribution one needs to prebook the corresponding template histogram that will be filled from simulated sample.
This template histogram should have the same dimensionality (1,2,3) and the corresponidg data distribtion. If data distribution is specified
in a form of historgam, the edges of prebooked template histogram should correspond to the edges of data distribution, but there is no
requirements for binning. Binning could be arbtrary, provided that there are no empty bins.

hmc_x = ROOT.TH1D ( ... )

hmc_y = ....

Iterations
Third, one needs to create empty database where the iterative weights are stored:

import Ostap.ZipShelve as DBASE 

dbname = 'weights.db'

with DBASE.open( dbname ,'c') as db : 

     pass

Since Reweighting is essentially iterative procedure, we need to define some maximal number of iterations

iter_max =   10 

for iter in range(iter_max) : 

   ...

Weighter object

And for each iteration we need to create weighting object, that reads the current weights from database  weight.db 

from Ostap.Reweighting import Weight  

weightings = [

    ##         accessor function    address indatabase    

    Weight.Var ( lambda s : s.x  , 'x-reweight'  ) ,

    ...  

]    

weighter   = Weight ( dbname , weightings )



The accessor function is used to get the variable from simulated sample. E.g. in this form,
 TTree / TChain / RooDataSet / RooArgSet  can be used as source of simulated data. but it could be also e.g. some table,  numpy 
array or any other storage. In this case the accessor function needs to be modified accordingly. The second parameter specify the
location in (newly created empty) database, where the current weights are to be taked from. Since the newly created database is
empty, for the first iteration all weights are trivial and equal to 1:

mc_tree =  ...

for i in range(100): 

  mc_tree.GetEntry(i) 

  print ' weight for event %d is %s' % ( i , weighted (  mc_tree ) )  

Weighted simulated sample

As the next step one needs to prepare simulated dataset,  RooDataSet , that

contains all varables for reweighting
the current values of weights, provided by  weighter -object above

There are many ways to achive this. E.g. one can use  SelectorWithVars -utility to decode data from input  TTree / TChain  into
 RooDataSet :

from Ostap.Selectors   import SelectorWithVars, Variable  

## variables to be used in MC-dataset 

variables  = [

   Variable ( 'x'      , 'x-var'  , 0  , 20 , lambda s : s.x ) ,  

   ...

   Variable ( 'weight' , 'weight' , accessor = weighter       )  

   ]

## create new "weighted" mcdataset

selector = SelectorWithVars (

   variables ,

   '0<x && x<20 && 0<y && y<20'

   )

## process 

mc_tree.process ( selector )

mcds = selector.data      ## newly created simulated dataset

print mcds

Calculate the updated weights and store them in database

At the next step we calculate the updated weights and store them in database

from Ostap.Reweighting import makeWeights,  WeightingPlot  

plots  = [

  ##             what      how        where          data      simulated-template 

  WeightingPlot ( 'x'   , 'weight' , 'x-reweight'  , hdata_x , hmc_x       ) ,  

  ...

  ]

## calculate updated weights and store them in database 

more = makeWeights ( mcds , plots , dbname , delta = 0.01 ) ## <-- HERE

The object  WeightingPlot  defines the rule to fill simulated histogram from simulated dataset and associated the filled simulated histogram
with data distribution. The actual correction to the weights is calculated according to the rule  w = dd / mcd , where  dd  is a density for
the data distribution and  mcd  is a density for simulated distribution. The weights  w  are calculated for each entry in array  plots , they

What is it?



are properly normalized and stored in database  dbname  to be used for the next iteration. The function  makeWeights  also print the statistic
of normalized weights:

# Ostap.Reweighting         INFO    Reweighting:           ``x-reweight'': mean/(min,max):        (1.00+-0.00)/(0.985,1.012) R

MS:(0.74+-0.00)[%]

The last entries in this row summarize the statistics of corrections to the current weight. In this example, the mean correction is  1.00 , the
minimal correction is  0.985 , the maximal correction is  1.012  and rms for corrections is  0.74\% . In tihs example one sees that for this
paricualr iteration th ecorrections are rather small, and probably one can stop iterations. Two parameters  delta  and  minmax  of
 makeWeights  function allows to automatized th emakinnng the decison. If calculated rms for all corrections is less than specified  delta 
parameter and for each correction minnmax-difference deos not exceeed the specified  minmax -parameter (the default value is  0.05 ),
function return  False  (meaning no more iterations are needed), otherwise it returns  True . And using this hint one can stop iterations
or go further:

if not more and iter > 2 :

    print  'No more iteratinos  are needed!'

    break

Compare data and simulated distributions for each iteration (optional)

In practice it is useful (and adviseable) to compare the data and simulated distributions at each iteration to hjave better control over the
iteration process. One can make this comparion using zillions of the ways, but for the most imnportant case in practice, where data
distribution is specified in a form of histogram, there are some predefined utilities

## prepare simulated distribution with current weights:

mcds.project ( hmc_x , 'x' , 'weight' ) 

## compare the basic properties: mean, rms, skewness and kurtosis

hdata_x.cmp_prnt ( hmc_x , 'DATA' , 'MC' , 'DATA(x) vs MC(x)' )

## calculate the ``distance``:

dist = hdata_x.cmp_dist ( hmc_x , density = True )

print "DATA(x)-MC(x)  ``distance''        %s" % dist 

## calculate the 'orthogonality'

cost = hdata_x.cmp_cos  ( hmc_x , density = True )

print "DATA(x)-MC(x)  ``orthogonality'' %s" % cost 

## find the points of the maximal difference 

mn,mx = hdata_x.cmp_minmax ( hmc_x   , diff = lambda a,b : a/b , density = True )

print "DATA*(x)/MC(x) ``min/max-distance''[%%] (%s)/(%s) at x=%.1f/%.1f" % (

        (100*mn[1]-100) , (100*mx[1]-100) , mn[0]  , mx[0] )

Using the result

from Ostap.Reweighting import Weight  

weightings = [

    ##         accessor function    address indatabase    

    Weight.Var ( lambda s : s.x  , 'x-reweight'  ) ,

    ...  

]    

weighter = Weight ( dbname , weightings )

mc_tree  =  ...

for i in range(100): 

  mc_tree.GetEntry(i) 

  print ' weight for event %d is %s' % ( i , weighted (  mc_tree ) )

Note that due to explicit specification of accessor function, reweighter can be customised to work with any type of input events/records.
e/g/ assuem that event is a plain array, and  x -variable corresponds to index  0 :



from Ostap.Reweighting import Weight  

weightings = [

    ##         accessor function    address indatabase    

    Weight.Var ( lambda s : s[0]  , 'x-reweight'  ) ,

    ...  

]    

weighter = Weight ( dbname , weightings )

mc_tree  =  ...

for event in  events : 

  print ' weight for event %s is %s' % ( event , weighted ( event ) )

Abstract reweighting

Due to the freadom in choosing the accessor function, one can apply reweighting procedure to the absolutely abstract samples. E.g.
consider the follwing case

data distribution : simple function
simulated sample : random number generator

As a result of reweighting procedure, we'll get reweighted simulated sample, that will be just a random number generator, that
produces the weighted distribution according to the specified function. For this case, the code is very transparent and compact:

# =============================================================================

## 1)  ``DATA distribution''  - plain function

def data ( x ) :

    return 0.5 + math.sin ( x * math.pi )**2 

# =============================================================================

## 2) ``simulation template'' -  histogram template for simulated sample 

mc_hist = ROOT.TH1F ( 'hMC', '', 20 , 0 , 1  )

# =============================================================================

def mc_sample () :

    x = random.expovariate ( 1 )

    while x  > 1  : x -=1

    return x

# =============================================================================

## 3) create empty database with initial weights 

# =============================================================================

import Ostap.ZipShelve as DBASE

if os.path.exists ( dbname ) : os.remove ( dbname )

with DBASE.open( dbname ,'c') as db : 

And then one starts iterations:

Abstract reweighting



# ============================================================================

## 4) prepare reweigthing iterations

# ===========================================================================

from Ostap.Reweighting import Weight, makeWeights,  WeightingPlot

from Ostap.Selectors   import SelectorWithVars, Variable   

for iter in range ( 100 ) :    

    ##                                             accessor       address in DB    

    weighter   = Weight( dbname ,  ( Weight.Var ( lambda x : x , 'x-reweight'  ) , ) ) 

    ## create ``weighted'' simulated  dataset using the current weights

    selector = SelectorWithVars (

        selection  = '1<2' , ## fake one :-( to be removed soon 

        silence    = True  , 

        variables  = [ Variable ( 'x'      , 'x-var'  , 0  , 1  , lambda x : x ) ,  

                       Variable ( 'weight' , 'weight' , accessor = weighter    ) ] )    

    for  i in  range ( 1000000 ) :

        x = mc_sample () 

        selector ( x )

    mcds = selector.data 

    ##  update weights: the rule to create weighted simulated histogram

    plots = [ WeightingPlot ( 'x' , 'weight' , 'x-reweight' , data , mc_hist  ) ]    

    ## calculate the updated weights and add them into   database  

    more = makeWeights ( mcds , plots , dbname , delta = 0.01 )

    if not more and 2 <= iter : 

        logger.info ( 'No more iterations are needed #%d' % iter )

        break

The full example for abstract reweighting, is accessible here

The density distribution for the simulated sample for before the first (blue open squares) and after the last (filled red points)
iterations are shown here, 

while the comparison of the initial data distribution (red line) and the reweighted simulated sample (greed filled diamonods) are
shown here. 

https://gist.github.com/VanyaBelyaev/9a2605cb4a0a84d1fe21579636a2611e


One can argue that low-dimension reweigthing can be done withoky iterations, just in one-go. Why one needs iterations here?

The answer is rather simple: yes for very simple case, like 1D-reweigthing, already the first iteration should provide the exact result.
However it is true only if data dsitribution is suppleds and the historgam and the template for the simulated histogram has the same
binning. Otherwise the differnt binning scheme results in non-exact result for 1-step reweighting.

For multidimensional reweighting one can avoid iteration only if all innvolved variables are totally uncorrelated, otherwise the
iterative procedure is unavoidable.

Moreover in the presense of correlations oscillation effect could occur, that prevents the quick convergency of the iterative
procedure. To solve this problem,  makeWeighted -function fior multidimensional case actually under-correct the results. It increases
the number of nesessary iterations and make the reweighting procedure more slow, but itpractially eliminates the oscillation effect

Examples

Simple  1D -reweighting

The example of simple 1D-reweighting can be inspected here, while the reweigthing result for the last iteration (blue open squares) are
compared with data distribution (red filled circled) here:

Why one needs iterations?

https://gist.github.com/VanyaBelyaev/ab80fc08d1d4192d348147f442d5d10d


The example also illustrates how to use various histogram comparison functions to have better control over the iterative process

More complicated case of non-factorizeable  2D -reweighting

The example of advanced 2D-reweighting can be inspected here. In this example we have three data distributions fro two variables 1 one-
dimensional  x -distribution with fine binninig 1 one-dimensional  y -distribution with fine binninig 1 two-dimensional  y:x -
distribution with coarse binning

https://gist.github.com/VanyaBelyaev/fb9b48500f9d7d6ec0ff5612977d7e97






It reflects relatively frequent case of kinematic reweighting using the transverse momentum and rapidity. Typically one has enough events
to make fine-binned one-dimensional reference distributions, but two-dimensional distributions can be obtained only with relatively coarse
binning scheme.

Simulated sample is a simlpe 2D-uniform distribution. Note that the data distributions are non-factorizeable, and simple 1D-reweightings
here is not enought. In this example, for the first five iteration only 2D-reweighting  y:x  is applied, and then two 1D-reweighting  x  and
 y  are added.

After the reweighting the simulated distributins are

for  x -variable: data distribution (red filled circled) vs simulated sample (blue open squares) 



for  y -variable: data distribution (green filled diamonds) vs simulated sample (orange filled swiss-crosses) 



for  y:x -variables





Contributing
ostap-tutorials is an open source project, and we welcome contributions of all kinds:

New lessons;
Fixes to existing material;
Bug reports; and
Reviews of proposed changes.

By contributing, you are agreeing that we may redistribute your work under these licenses. You also agree to abide by our contributor code
of conduct.

Getting Started
1. We use the fork and pull model to manage changes. More information about forking a repository and making a Pull Request.

2. To build the lessons please install the dependencies.

3. For our lessons, you should branch from and submit pull requests against the  master  branch.

4. When editing lesson pages, you need only commit changes to the Markdown source files.

5. If you're looking for things to work on, please see the list of issues for this repository. Comments on issues and reviews of pull
requests are equally welcome.

Dependencies
To build the lessons locally, install the following:

1. Gitbook

Install the Gitbook plugins:

$ gitbook install

Then (from the ostap-tutorials directory) build the pages and start a web server to host them:

$ gitbook serve

You can see your local version by using a web-browser to navigate to  http://localhost:4000  or wherever it says it's serving the book.

https://github.com/OstapHEP/ostap-tutorials/issues
https://help.github.com/articles/using-pull-requests/#fork--pull
https://help.github.com/articles/fork-a-repo/
https://help.github.com/articles/using-pull-requests/
https://github.com/OstapHEP/ostap-tutorials/issues
https://github.com/GitbookIO/gitbook/blob/master/docs/setup.md
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